skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marquand, Lisa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We give a complete classification of symplectic birational involutions of manifolds ofOG10 type. We approach this classification with three techniques—via involutions of the Leech lattice, via involutions of cubic fourfolds, and finally lattice enumeration via a modified Kneser’s neighbour algorithm. The classification consists of three involutions with an explicit geometric realisation via cubic fourfolds, and three exceptional involutions which cannot be obtained by any known construction. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract There are two types of involutions on a cubic threefold: the Eckardt type (which has been studied by the first named and the third named authors) and the non-Eckardt type. Here we study cubic threefolds with a non-Eckardt type involution, whose fixed locus consists of a line and a cubic curve. Specifically, we consider the period map sending a cubic threefold with a non-Eckardt type involution to the invariant part of the intermediate Jacobian. The main result is that the global Torelli Theorem holds for the period map. To prove the theorem, we project the cubic threefold from the pointwise fixed line and exhibit the invariant part of the intermediate Jacobian as a Prym variety of a (pseudo-)double cover of stable curves. The proof relies on a result of Ikeda and Naranjo–Ortega on the injectivity of the related Prym map. We also describe the invariant part of the intermediate Jacobian via the projection from a general invariant line and show that the two descriptions are related by the bigonal construction. 
    more » « less
  3. There are three types of involutions on a cubic fourfold; two of anti-symplectic type, and one symplectic. Here we show that cubics with involutions exhibit the full range of behaviour in relation to rationality conjectures. Namely, we show a general cubic fourfold with a symplectic involution has no associated K 3 K3 surface and is conjecturely irrational. In contrast, a cubic fourfold with a particular anti-symplectic involution has an associated K 3 K3 , and is in fact rational. We show such a cubic is contained in the intersection of all non-empty Hassett divisors; we call such a cubic Hassett maximal. We study the algebraic and transcendental lattices for cubics with an involution both lattice theoretically and geometrically. 
    more » « less